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Abstract. Neurofilaments (NFs), composed of three 
distinct subunits NF-L, NF-M, and NF-H, are neuron- 
specific intermediate filaments present in most mature 
neurons. Using DNA transfection and mice expressing 
NF transgenes, we find that despite the ability of 
NF-L alone to assemble into short filaments in vitro 
NF-L cannot form filament arrays in vivo after expres- 
sion either in cultured cells or in transgenic oligoden- 
drocytes that otherwise do not contain a cytoplasmic 
intermediate filament (IF) array. Instead, NF-L ag- 
gregates into punctate or sheet like structures. Similar 
nonfilamentous structures are also formed when NF-M 
or NF-H is expressed alone. The competence of NF-L 

to assemble into filaments is fully restored by coex- 
pression of NF-M or NF-H to a level ,x,10% of that of 
NF-L. Deletion of the head or tail domain of NF-M 
or substitution of the NF-H tail onto an NF-L subunit 
reveals that restoration of in vivo NF-L assembly com- 
petence requires an interaction provided by the NF-M 
or NF-H head domains. We conclude that, contrary to 
the expectation drawn from earlier in vitro assembly 
studies, NF-L is not sufficient to assemble an extended 
filament network in an in vivo context and that neuro- 
filaments are obligate heteropolymers requiting NF-L 
and NF-M or NF-H. 

I 
N most eukaryotic cells, the cytoskeleton is composed 
of three distinct structural components with character- 
istic diameters: actin-microfilaments (7 nm), intermedi- 

ate filaments (IFs) t (8-10 nm), and microtubules (24 nm). 
The subunits from which cytoplasmic and nuclear IFs are as- 
sembled have been categorized into five distinct groups 
based on primary amino acid sequence differences and the 
intron positions of the genes encoding the subunits (Steinert 
and Roop, 1988). Types I and II include acidic and basic ker- 
atins expressed primarily by epithelial cells. The type 111 
consists of vimentin expressed in cells of mesenchymal ori- 
gin, desmin expressed in muscle cells, GFAP expressed in 
astrocytes, and pedpherin expressed by a subset of neurons 
in the peripheral nervous system. Type IV consists of 
neurofilaments (NFs) expressed by most mature neurons, 
although nestin, expressed in neural precursor cells and 
ot-internexin, expressed in subset of neurons particularly 
during early neurite outgrowth, probably belong to type IV 
as well (Fliegner et al., 1990; Cleveland et al., 1991). The 
nuclear lamins that form the filaments underlying the nuclear 
membrane constitute type V. All of these IF proteins are 
characterized by an ot-bellcal domain of --310 (or 352 for 
the lamins) amino acids that is flanked by globular amino- 
terminal head and carboxyl-terminal tail domains whose 
lengths vary and whose amino acid sequences are not con- 
served. 

1. Abbreviations used in this paper: CMV, Cytomegalovirus; GFAP, glial 
fibrillary acidic protein; IF, intermediate filament; MSB, microtubule 
stabilization buffer; MSV, murine sarcoma virus; NF, neurofflament. 

In most mature neurons, particularly in the neurons that 
give rise to large myelinated axons, the IF system is almost 
exclusively composed of neurofilaments. In these axons, 
neurofilaments are by far the most abundant cytoskeletal ele- 
ment, often exceeding the number of microtubules by an or- 
der of magnitude. Several lines of evidence have collectively 
demonstrated that proper assembly and organization of 
neurofilaments in axons are important for specifying the ax- 
onai diameter of the large caliber myelinated axons (see 
Cleveland et al., 1991; Yamasaki et al., 1991). More re- 
cently, transgenic mice models have shown that disruption 
of normal neurofilament subunit content by over-expression 
of either NF-L or NF-H results in abnormal assembly and 
aggregation of neurofdaments in neuronal cell bodies, partic- 
ularly in the motor neurons (C6t6 et al., 1993; Xu et al., 
1993). In these transgenic mice, the disruption of normal or- 
ganization of neurofilaments was accompanied by motor neu- 
ron defects that ultimately resulted in denervation-induced 
atrophy of skeletal muscles. The role of neurofilaments in 
these pathogenic events highlights the importance of iden- 
tification and characterization of domains in NF subunits 
that participate in normal cytoplasmic assembly and organi- 
zation. 

Unlike most other non-epithelial IFs, which are homo- 
polymers (e.g., vimentin, desmin, and GFAP), neurofila- 
ments in mature neurons are assembled from three separate 
subunits called NF-L, NF-M, and NF-H, with true molecu- 
lar masses of ~60 kD (NF-L), ,~100 kD (NF-M), and --120 
kD (NF-H) (reviewed by Nixon and Shea, 1992). The pres- 
ence of a conserved 310 amino acid s-helical rod domain on 
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Figure L Gene constructs for expression NF-L, NF-M, NF-H, and 
LLH-hybrid subunits. (A) Schematic drawing of CMV-NFL or 
pMSV-NFL genes. Schematic drawing of (B) MSV-NFM gene; (C) 
MSV-NFH gene; and (D) MSV-LLH gene. The introns in C are not 
drawn to scale and the actual size of introns are indicated. (D) 
Shown at the bottom of D is a schematic drawing of MSV-LLH 
polypeptide. The encoded amino acid numbers are shown below the 
arrowheads. The numbers in the parentheses represent the amino 
acid numbering from the wild-type NF-H polypeptide for the NF-H 
tail segment in LLH. 

all three NF subunits indicates that each may be an integral 
subunit of the 10-nm NFs. Assembly studies using purified 
NF-subtmits show that only NF-L and NF-M, but not NF-H, 
are able in vitro to form 10-nm filaments (Gardner et al., 
1984; Geisler and Weber, 1981; Liem and Hutchinson, 
1982), although even under optimal conditions NF-M self- 
assembles into short, irregular filaments and only under very 
limited buffer conditions. Both NF-M and NF-H can be in- 
corporated into filaments in the presence of NF-L, indicating 
that determinants for coassembly are contained within the 
individual subunits (Balin and Lee, 1991; Hisanaga and 
Hirokawa, 1988; Zackroff et al., 1982). These in vitro as- 
sembly experiments, along with antibody decoration of na- 
tive neurofilaments (Hirokawa et al., 1984; W'dlard and 
Simon, 1981), have led to the conclusion that in vivo neu- 
rofilaments are probably assembled from an NF-L core and 
that NF-L is necessary and sufficient to form filaments. 
Thus, potential functional roles for both NF-M and NF-H 
have focused on interactions mediated by the long carboxyl- 
terminal tail domains (438 and 676 amino acids for NF-M 
and NF-H, respectively) which are targets for multiple phos- 
phorylation events (see Nixon and Shea, 1992). However, in- 
terpretation of neurofilament reassembly studies is not as 
straightforward as it may seem. In vitro reassembly of neu- 
rofilaments requires acidic pH, is inefficient when compared 
to the reassembly of either Type III filaments (vimentin) or 
Type I/II filaments (keratin) and yields short, somewhat ir- 
regular filaments. Moreover, neurofilaments reassembled in 

vitro do not approximate the parallel arrays of organized neu- 
rofilaments seen in all regions of a neuron. 

In vivo assembly characteristics of NF subunits have also 
been studied by expressing NF subunits in fibroblast cells in 
culture and examining the coassembly of NF subunits with 
endogenous vimentin filaments (Monteiro and Cleveland, 
1990; Gill et al., 1990; Wong et al., 1990; Chin and Liem, 
1990; Chin et al., 1991). Using such pseudo-in vivo sys- 
tems, the rod as well as portions of the head and tail domains 
of both NF-L and NF-M have been shown to be important 
for coassembly with vimentin into a cytoplasmic network of 
filaments. We have now extended such analyses by examin- 
ing the self-assembly and organization of NF subunits into 
a cytoplasmic neurofilament network in cells that do not ex- 
press any cytoplasmic intermediate filaments. What we find 
is that the de novo assembly of neurofilaments in vivo re- 
quires both NF-L and either NF-M or NF-H. Further, we 
demonstrate that the amino-terminal head, but not the 
carboxyl-terminal tail, of NF subunits are required for as- 
sembly of a neurofilament network in vivo. 

Materials and Methods 

Construction of Hybrid NF Genes 
The construction of routine sarcoma virus (MSV) promoted NF genes, as 
well as amino and carboxyl-terminal truncation mutants, have been de- 
scribed (Monteiro and Cleveland, 1990; Gill et al., 1990; Wong and Cleve- 
land, 1990). Cytomegalovirus promoted vimentin (pCMV-vimentin) (Sore- 
mers et al., 1992) was a kind gift from Dr. Connie Sommers (National 
Institutes of Health, Bethesda, MD). 

To construct pCMV-NFL (Fig. 1 A), pNF-L-Bam (Monteiro and Cleve- 
land, 1990) was linearized at the BamH1 site located between the promoter 
and the AT(:; translation initiation codon and blunted with Klenow and 
dNTP. The DNA was then digested with HindIH and the 5-kb NF-L gene 
fragment missing the Y-promoter region was isolated. To produce pCMV, 
the 600-bp human CMV early promoter was cloned between KpnI and XhoI 
sites in pGEM-3z. To produce pCMV-NFL, pCMV was digested with 
XhoI, blunted with Klenow and digested with HindIII. The 5-kb 5'-blunff 
3'-HindIII NF-L fragment from above was then ligated into blunt/HindIll 
sites 3' to the CMV promoter. 

To construct pMSV-NFH (Fig. 1 C), a 12-kb fragment containing the 
mouse NF-H gene was obtained by double digesting Cos3Al (kindly 
provided by Dr. J.-P. Julien, Montreal, Canada; Julien et al., 1988) with 
KpnI and SaIL To obtain pNFH, the 12-kb NF-H gene was cloned between 
Kpnl and SalI sites of pUCI9. To obtain pMSV-NF-H, the NF-H promoter 
in pNFH was removed using Kpnl and NotI and replaced with the MSV 
promoter described below. A 600 base (HindIII-BglH fragment) containing 
the MSV promoter was subcloned between the HindIII-BamHI sites of 
pBluscriptlI-KS + (pBSII-KS+). The MSV promoter was then excised with 
KpnI and NotI and ligated in place of NF-H promoter. 

To construct pMSV-LLH (Fig. 1 D), oligonucleotide-directed mutagene- 
sis was used to create HindIII restriction sites in both NF-L and NF-H genes 
and at exactly the same position in the carboxy-terminal portion of the rod, 
which ends in a sequence (RKLLEGE) common to both NF-L and NF-H. 
The nucleotide changes did not alter the amino acid sequence (Fig. 1 D). 
For NF-H, a 2.3-kb EcoRI fragment (encoding amino acids 267-1053 of 
NF-H) from a partial NF-H cDNA clone, pMuH1 (kindly provided by Dr. 
P. Shneidman, University of Pennsylvania; Shneidman et al., 1988), was 
subeloned into the EcoRI site of M13mp18. Single-stranded DNA was ob- 
tained from a clone with desired orientation and a HindlII site was en- 
gineered into the gene by oligonuclcotide-directed mutagenesis using the 
Amersham kit, version 2.1 (Amersham Corp., Arlington Heights, IL). The 
mutants were confirmed by DNA sequencing. Double-stranded DNA was 
recovered and digested with Hindm and EcoRV. The mutated 1.3-kb frag- 
ment was cloned between the EcoRV-HindlII sites of pBSII-KS + to pro- 
duce pMuHI(H3)-BS. To introduce a HindHl site in the NF-L gene, 1 kB 
KpnI fragment containing the sequences encoding the terminal rod domain 
(including the KLLEGE) was subcloned into the KpnI site of pBSII-KS +. 
Single stranded DNA templates were rescued (using helper phage R408) 
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Figure 2. Individual NF subunits are self-assembly incompetent in an in vivo context. IF-  SWl3 ceils were grown on glass coverslips and 
transfected with either (A) pMSV-NFH, (B) pMSV-NFM, (C) pMSV-NFL, or (D) pCMV-Vim. Using immunofluorescence microscopy, 
(.4) NF-H and (C) NF-L were localized by affinity-purified rabbit polyclonal antibodies to either NF-L or NF-H followed by fluorescein- 
conjugated goat ant i-rabbit  IgG. (B) NF-M and (D) vimentin were localized by mouse ant i -NF-M or anti-vimentin mAbs followed by 
fluorescein-conjugated horse ant i -mouse IgG. Bar, 10 t~m. 

from a clone with the desired insert orientation and a HindIH site was intro- 
duced by oligonucieotide-directed mutagenesis. The desired clone, 
pNFL(Kpn-H3), was identified using both restriction digestion with HindllI 
and DNA sequencing, pNFL(Kpn-H3) was then digested with KpnI and 
HindIII to obtain a 450-bp fragment containing the sequences just 5' to the 
KLLEGE-domain of NF-L. This fragment was ligated 5' to pMuI-II(H3)- 
BS, which had been linearized by double digesting with KpnI and HindIH. 
The resulting clone, pL(Kpn)HI(H3)-BS, contains the 3'-half of NF-L exon 
2, intron 3 and the engineered HindIH site located 1 base into exon 3, fol- 
lowed by the NF-H tail region up to sequences encoding amino acid 798. 
To complete the carboxyl-terminal region of NF-H and to add a myc-epitope 
tag, an 870 base fragment beginning at codon 799 and ending at the normal 
translation termination codon was obtained by PCR. The PCR primers were 
designed so that the last four amino acids and the termination codon of 
NF-H were replaced with a NcoI site followed by a 12-amino acid myc-tag. 
The PCR fragment was digested with NcoI and ligated into pmyc-0 (a plas- 
mid carrying the myc-tng followed by the NF-L 3' gene flanking sequences; 
Wong and Cleveland, 1990) that had been first digested with SalI, blunted 
by Klenow and digested with NcoI. The resulting clone (pNFHc284-myc) 
contains the NF-H sequences encoding the last 284 amino acids of NF-H 
tail followed by the pmyc-0 sequences. From pNFHc284-myc, a 1.4-kb frag- 
ment encoding 284 amino acids of NF-H, the myc-tag and the NF-L poly 
A-signai was excised by double digesting with EcoRV and EcoRI. To obtain 
pH(Kpn-H3)Ht, this 1.4-kb fragment was ligated to pL(Kpn)HI(H3)-BS 
that had been iinearized by double digesting with ECORV and EcoRI. 

pMSV-LLH was built from three parts. To obtain the first of these, 
pMSV-NFL (Monteiro and Cleveland, 1990) was double digested with 
BgiH and EeoRI, yielding the pUC vector plus the MSV promoter, NF-L 
sequences in exert I up to a BgUI-site, and the NF-L 3'-flanking region. For 
the second part, the NF-L gene was double digested with BgllI and Kpnl 
to obtain a 1.8-kb fragment containing the Y-end of NF-L exert 1, NF-L in- 
tron 1 and 5'-haifofexon 2. For the third fragment, pL(Kpn-H3)Ht was dou- 
ble digested with KpnI and EcoRI; the resulting 3-kb fragment contained 
the NF-sequences and the myc-tag was purified. These fragments were 
ligated together to obtain pMSV-LLH. 

Tissue Culture and Transfection 

V~tmantin containing (eLl; IF +) and vimentin negative (el.2; IF-) clones of 
the $W13 cell line (derived from a human adrenal carcinoma (Sarria et al., 
1990) were kindly provided by Dr. Robert M. Evans (Department of Pathol- 
ogy, University of Colorado Health Sciences Center). The SW13 cells were 
grown in DME supplemented with 10% FBS. The SW13 cells were tran- 
siently transfeeted using the calcium phosphate co-preeipitadon procedure 
(Graham and van der Eb, 1973). The cells were routinely analyzed 40 h 
after transfection. 

Mouse fibroblast L-cells were maintained in DME supplemented with 
10% FIGS. The L-ceUs were transiently transfected using the DEAE-dextran 
method (Lopata et al., 1984). Cells were analyzed 40 h after transfection. 
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lmmunofluorescent Staining and Light Microscopy 
Cells grown on glass coverslips were washed in microtubule stabilization 
buffer (MSB: 4 M Glycerol, 100 mM Pipes-KOH, pH 6.9, 1 mM EGTA 
and 1 mM MgSO4) for 30 s at 350C, extracted for 60 s in MSB containing 
0.4% (wt/vol) Triton X-100 at 35°C and briefly rinsed in MSB. The samples 
were then fixed by immersion in -200C methanol for 10 rain. The samples 
were rehydrated in PBS, blocked with 2 % nonfat dry milk for 15 rain at 
room temperature, washed in PBS and incubated with a primary antibody 
(diluted in PBS containing 0.2 % nonfat dry milk) for 1-2 h at room tempera- 
ture in a humidified chamber. After the primary antibody incubation, cover- 
slips were washed three times in PBS, incubated for 1 h in secondary anti- 
body, washed again in PBS, and mounted on glass slides using Aquamount 
(Lerner Laboratories, New Haven, CT). The cells were examined on an 
Olympus BH-2 microscope using epifiuorescence optics and photographed 
on Kodak T-MAX film (Eastman Kodak Co., Rochester, NY). Proteins con- 
taining the 12-amino acid myc cpitope tag were detected using either an 
anti-myc mouse mAb (mycl-9El0; Evan et al., 1985) or afffinity-purified rab- 
bit polyclonal antibodies generated against a myc synthetic peptide (CTG- 
MEQKLISEEDLN). Specific NF subunits were also detected using mouse 
mAbs to either NF-L, NF-M, or NF-H, and affinity-purified rabbit poly- 
clonal antibodies to NF-L or NF-H (Xu et al., 1993). A goat anti-vimentin 
polyclonal antibody (ICN Irnmunobiologicals, Costa Mesa, CA) and an 
anti-vimentin mouse mAb (VS; Boehringcr Mannheim Diagnostics, Inc., 
Indianapolis, IN) were used to detect vimentin. Appropriate affinity- 
purified secondary antibodies conjugated to either Texas red or flnorescein 
were used. 

SDS Gel Electrophoresis and lmmunoblotting 
Cells were usually harvested 40 h after transfection, washed once with PBS, 
once with MSB at 35"C, extracted for 1 rain with MSB containing 0.4% 
Triton X-100 at 35"C, and washed once with MSB at 35"C. The remaining 
cytoskeletal fraction was solubilized in 2 % (wt/vol) SDS in 50 mM Tris- 
HC1, pH 6.8. Extracts were boiled for 5 rain (100*C) and protein concentra- 
tions were determined using the bicinchoninic acid method (Smith et al., 
1985). Extracts were then diluted with SDS sample buffer containing 
B-mereapteethanol, boiled again for 5 rain, and equal amounts of cytoskele- 
tal proteins were separated by electrophoresis on 7.5 % polyacrylamide gels 
(Laemmli, 1970). The separated proteins were immunoblotted (Lopata and 
Cleveland, 1987) and NF-L, NF-M, NF-H and vimentin were detected by 
autoradiography using mouse monoclonal primary antibodies against the 
appropriate proteins and 125I-labeled goat anti-monse secondary antibody. 
To quantify the amount of NF subunits accumulated in any sample, a series 
of twofold dilutions of neurofilaments purified from mouse spinal cord and 
containing known amounts of each NF subunit were immunoblotted in par- 
allel with the samples of interest. The immunoreactivity of specific NF- 
subunit bands was quantified by densitometric scanning of the autoradio- 
gram and compared with a standard curve constructed from densitometric 
scan of the neurofilament standards. 

Ultrastructural Analysis of Transgenic Mice 
Characterization of transgenic mouse lines expressing wild-type NF-L un- 
der the control of a MSV promoter (MSV-NFL-58 and MSV-NFL-103) has 
been previously described (Xu et al., 1993; Monteiro et al., 1990). Similar 
transgenic animals expressing a NF-M polypeptide in which the last 50 
carboxyl-terminal amino acids were replaced by a 12-amino acid myc epi- 
tope tag (MSV-NF-Mca50; Wong et al., 1990) were generated by standard 
transgenic methods. A detailed characterization of these mice will be de- 
scribed elsewhere (Wong, P. C., J. Marszalek, and D. W. Cleveland, manu- 
script in preparation). Transgenic mice expressing both NF-L and NF- 
Me,,50 in oligodendrocytes were engineered by mating MSV-NFL-58 with 
mice expressing MSV-NF-Mca50. 

Mouse tissues were fixed for immunocytochemistry by intracardial per- 

fusion with either 4% paraformaldeh~le in 0.1 M sodium phosphate, pH 
7.6. For EM, tissues were fixed by intraeardial perfusion with 4% parafor- 
maldehyde and 2.5% glutaraldehyde in 0.1 M sodium phosphate, pH 7.6. 
For immunocytochemistry, the spinal cords were cryoprotected in 20% 
glycerol in 0.1 M sodium phosphate, pH Z6 and frozen sections were cut 
(40 #m). The transgenic NF subunits in nonneuronal cells in the spinal cord 
white matter were localized using double immunottuorescenee microscopy. 
NF-L and NF-McaS0 were colocalized using affinity-purified anti-NFL 
rabbit polyelonal antibodies (Xu et al., 1993) and anti-myc mouse mAb 
(mycl-9E10; Evan et al., 1985) as primary antibodies. Astrocytes were 
identified using a rabbit polyelonal antibody to GFAP (Dako Corp., Carpin- 
teria, CA). 

For EM, paraformaldehyde/glutaldehyde fixed spinal cords were post- 
fixed with 2% osmium tetroxide in 0.1 M phosphate buffer, dehydrated in 
alcohol and embedded in Epon-Araldite resin. Thin sections were cut and 
stained with uranyl acetate and lead citrate and examined in an Hitachi 
H-600 transmission electron microscope. 

Results 

Individual Neurofilament Subunits Are Self-assembly 
Incompetent In Vivo 
To examine the ability of each NF subunit to self-assemble 
an extended, de novo filament network in vivo, wild-type 
mouse NF-L, NF-M, and NF-H were individually expressed 
in IF- SWI3 cells, a cloned subline in which vimentin ex- 
pression has been spontaneously silenced (Sarria et al., 
1990). NF subunits and vimentin were localized 40 h after 
transfection using double immunofluorescence microscopy. 
(Simultaneous localization of vimentin and NF subunits was 
routinely done to control for the small percentage of the cells 
[~,,1-5%] that spontaneously revert to IF + phenotype.) As 
expected from its known in vitro assembly properties, in the 
absence of an endogenous IF array, NF-H failed to assemble 
into a filament network and localized to nontilamentous, 
punctate structures that extended out to the peripheral mar- 
gins of the cell (Fig. 2 A). When expressed alone, NF-M was 
also incompetent to self-assemble within an in vivo context 
and localized to nonfilamentous structures similar to those 
seen with NF-H (Fig. 2 B). In view of its assembly compe- 
tence in vitro, expression of NF-L in IF- cells produced an 
even more surprising result. At lower levels of accumulation, 
NF-L was restricted to fine punctate structures (not shown) 
similar to those seen with NF-M and NF-H. At higher levels 
of NF-L (achieved with the CMV-NFL gene), NF-L formed 
large nonfilamentous aggregates that covered large portions 
of the cytoplasm (Fig. 2 C). 

The absence of an IF network assembled from individual 
neurofilament subunits does not represent an inherent defect 
in IF assembly in the SW13 IF- line: forced expression of 
human vimentin yielded a well elaborated vimentin filament 
network in the same cells (Fig. 2D; also see Sarria et al., 
1990). Quantitative immunoblotting to measure average lev- 
els of accumulated NF-L, NF-M, NF-H, or vimentin showed 
that failure to assemble networks from the NF subunits could 
not be explained by low levels of expression (see below). 

Figure 3. Coassembly of individual NF subunits with endogenous vimentin in IF + SWI3 cells. SW13-ci.1 cells were grown on glass c~er- 
slips and transfccted with plasmid (,4 and B) pCMV-NFL, (C and D) pMSV-NFM and (E and F) pMSV-NFH. Mouse L-cells grown on 
glass coverslips were transfected with (G and H) pMSV-NFH. (,4, C, and G) NF subunits were localized using affinity-purified rabbit 
polyclonai antibodies against (,4) NF-L or (E) NF-H or mouse mAbs against (C) NF-M and (G) NF-H. Appropriate fluorescein-conjngated 
secondary antibodies were used to visualize expression try indirect immunofluroescencc microscopy. (B, D, F, and H) Vimentin in the 
same transfccted cells was visualized using double immunofluorescence microscopy with (B and F) mouse mAbs or (D and H) goat poly- 
clonal antibodies to vimentin followed by appropriate Texas red-conjngated secondary antibodies. Bar: (A-F) I0 #m; (G and H) 16 #m. 
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Figure 4. Coexpression of NF-L with either NF-M or NF-H drives de novo assembly of neurofilaments in IF- SWl3 cells. SWl3 ceils 
were co-transfeeted with pCMV-NFL and either (.4 and B) pMSV-NFM or (Cand D) pMSV-NFH. (A and C) Immtmofluorescence localiza- 
tion of NF-L by affinity-purified rabbit anti-NF-L antibodies followed by fluorescein-conjugated secondary IgG. (B) NF-M and (D) NF-H 
were colocalized with NF-L in the same NF-L transfeeted cells shown in A and B using double immtmofluorescence microscopy by mouse 
monoclonal anti-NF-M or NF-H antibodies followed by Texas red-conjugated horse anti-mouse IgG secondary. Bar: (A and B) 16 #m; 
(C and D) 10 #tin. 

Further, the mouse NF-L and NF-M subunits were fully com- 
petent for coassembly with human vimentin in IF + SWl3 
cells (Fig. 3, A-D), results consistent with earlier transfec- 
tion experiments in other cells (Monteiro and Cleveland, 
1990; Chin et al., 1991). Similarly, in cells expressing low 
levels of NF-H (i.e., those with dimmer fluorescent signals) 
NF-H too coaligned into a vimentin filament network (as in 
other cells; Chin and Liem, 1990). However, as might be ex- 
pected from its in vitro behavior, higher levels of the com- 
pletely wild type NF-H polypeptide yielded nonfilamentous, 
punctate aggregates and a partially disrupted the endogenous 
vimentin network both in SWl3 IF+ [Fig. 3, E and F] and 
mouse L cells [Fig. 3, G and H]. 

We conclude that, since no single NF subunit is capable 
of forming a homopolymeric filament network in the IF- 
SWl3 cell, this must reflect a network assembly defect in 
each individual subunit. 

NF-M or NF-H Complements In Vivo Network 
Assembly Incompetence of  NF-L 

Since NF-L in vivo is always expressed in conjunction with 
other IF subunits (see Nixon and Shea, 1992), the fact that 
NF-L alone is not sufficient to form an in vivo filament net- 
work suggests that multiple NF subunits may be required to 
form a neurofilament network in vivo. To examine directly 
the possibility that neurofilaments in vivo are obligate bet- 
eropolymers, co-transfection was used to express NF-L with 
NF-M or NF-H in IF- SWI3 cells. In co-transfected cells, 
NF-L always assembled into a distinctive filamentous net- 
work consisting of long individual filaments, as well as thick 
bundles of filaments (Fig. 4). In extreme cases, lateral as- 
sociation of filaments yielded thick cables of filaments con- 
taining both NF-L (cell at lower right in Fig. 4 A) and NF-M 
(Fig. 4 B). In all cases, both NF-M (Fig. 4 B) and NF-H 
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subunits revealed that (in molar amounts) NF-M constituted 
only •10% of NF-L. Since calcium phosphate-mediated co- 
transfection results in a relatively uniform ratio of transgene 
expression in each transfected cell (as judged by relative 
fluorescent intensities; see also Kingston et al., 1989), the 
molar ratios of the subunits in the extracts probably reflect 
the molar ratios of NF subunits in most of the individual 
transfected cells. Thus, coexpression of NF-M is sufficient 
to complement network defective NF-L, even when the total 
concentration of NF subunits is lower than in cells express- 
ing NF-L alone. 

We conclude that (a) individual NF-subunits are incompe- 
tent to self-assemble into an extended filament network in 
vivo; (b) NF-L is necessary but not sufficient to drive neu- 
rofilament network assembly in vivo; and (c) incorporation 
of substoichiometric amounts of NF-M are able to comple- 
ment the network assembly defect of NF-L alone. 

Figure 5. A sub-stoichiometric mount of NF-M is able to drive as- 
sembly of NF-L into neurofilarnents in vivo. (A) 40/xg of proteins 
from cytoskeletal extracts of IF + (lanes 1 and 2) and IF- (lanes 3 
and 4) SW13 cells transfected either with pCMV-NFL alone (L; 
lanes I and 3) or co-transfected with pCMV-NFL and pMSV-NFM 
(L&M; lanes 2 and 4) were separated by SDS-PAGE and stained 
with Coomassie blue. (B) Duplicate gels were immunoblotted and 
reacted with mouse mAbs to NF-L and vimentin or NF-M, fol- 
lowed by t25I-labeled goat anti-mouse secondary antibody to visu- 
alize proteins by autoradiography. (For detection of NF-M, 80-/zg 
aliquots of proteins were loaded on each lane.) The molecular 
weight markers (in kD) are indicated on the left and the positions 
of NF-L, NF-M, and vimentin are indicated on the right. 

(Fig. 4 D) colocalized completely in heteropolymers with 
NF-L (Fig. 4, A and C). Expression of NF-M with NF-H in 
IF- SWl3 cells resulted in coaggregation of both NF sub- 
units into nonfilamentous punctate structures (not shown). 

One explanation for how NF-M or NF-H complements 
network assembly of NF-L would be that coexpression 
somehow enhanced the level of accumulated NF-L, thereby 
driving de novo filament assembly. To address this, the rela- 
tive levels of NF-L accumulated in IF + and IF- cells were 
determined. Proteins from cells 40 h after transfection with 
either NF-L alone or NF-L and NF-M were separated by 
SDS-PAGE (Fig. 5 A) and immunoblotted to visualize 
vimentin, NF-L and NF-M (Fig. 5 B). Dilutions of known 
amounts of NF-L, NF-M, NF-H, and vimentin were im- 
munoblotted in parallel to provide accurate quantitative 
standards (not shown). The number of cells expressing NF-L 
was as assayed by immunofluorescence microscopy and 
found to be comparable in all cases (between 15 and 20%). 
The immunoblots revealed that in both IF + (Fig. 5, lanes 1, 
2) and IF- (lanes 3, 4) ceils, the level of NF-L accumula- 
tion was almost identical. The failure of NF-L alone to self 
assemble could not be accounted for by lower abundance; in 
fact, when NF-L was coexpressed with NF-M (Fig. 5 B, 
lanes 2, 4), it accumulated to a lower level than in cells ex- 
pressing NF-L alone (Fig. 5 B, lanes 1, 3). Moreover, 
quantification of NF-L and NF-M in cells expressing both 

Sequences within the Amino-terminal Head, 
but Not the Carboxyl-terminal Tail, of NF-M 
and NF-L Are Essential for De Novo Assembly 
of Neurofilaments In Vivo 

To examine what domain(s) of NF-M is necessary for com- 
plementation of de novo assembly of NF-L into a filament 
network in vivo, a series of carboxyl-terminal or amino- 
terminal truncation mutants of NF-M were co-transfected 
into IF- SW13 cells along with the wild-type NF-L. Each 
mutant NF-M was epitope tagged at its carboxy terminus and 
the mutant was localized along with NF-L using double im- 
munofluorescence microscopy. When NF-M missing 50 
(NFM-Czx50, not shown), 197 (NFM-Czx197, Fig. 6 A), or 
391 (NFM-Czx391, Fig. 6 C) amino acids from the car- 
boxyl-terminus was expressed with wild-type NF-L, the 
mutant NF-M coassembled with NF-L and drove the assem- 
bly of a de novo neurofilament network. Even truncation of 
the entire tail (NFM-CA438, Fig. 6 E)  still complemented 
network assembly from NF-L. Further, among the different 
NF-M mutants and the wild-type NF-M, there were no con- 
sistent differences in the actual morphology of the assembled 
networks. The images shown (Fig. 6, A-F) give representa- 
tive examples of various morphologies of networks that are 
observed with all NF-M subunits. In particular, filament 
bundling into thick cables is a prominent feature. Further 
truncation into the rod domain of NF-M (e.g., NFM-CA443, 
not shown) did not support NF-L assembly. These results 
demonstrate that the entire tail domain of NF-M is dispens- 
able for driving network assembly of NF-L in an in vivo 
context. 

Next, the necessity of the amino-terminal head region of 
NF-M for de novo filament assembly with NF-L was exam- 
ined. When NF-L was expressed with NF-M deleted 42 
amino acids from its amino terminus (NFM-NA42), NFM- 
Nzx42 was able to coassemble with NF-L and drive the as- 
sembly of a filament network in complete absence of vimen- 
tin (Fig. 6, G and H). However, when NF-M missing 75 
amino-terminal amino acids (NFM-Nzx75) was expressed 
with the wild-type NF-L, both NFM-NA75 and NF-L 
colocalized to nonfilamentous, punctate aggregates (Fig. 6, 
I and J) .  Thus, amino acid sequences contained within the 
region between Set42 and Ser75 in NF-M are essential for 
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Figure 7. The hybrid NF-subunit LLH efficiently coassembles with vimentin into a filament network. L-cells were transiently transfected 
with pMSV-LLH. (A) LLH-hybrid was localized with a mouse monoclonal anti-myc antibody and (B) vimentin in the same transfected 
cells was localized by goat anti-vimentin polyclonal antibody. Bar, 10 #m. 

driving assembly of NF-L into a neurofilament network in 
vivo. 

The roles of the NF-L amino-terminal head and carboxyl- 
terminal tail in de novo assembly of neurofilaments were also 
examined. To test if any specific sequence within the entire 
carboxyl-terminal tail region of NF-L is essential for assem- 
bly of a filament network in vivo, a hybrid NF-gene was con- 
structed to encode a subunit in which the carboxyl-terminal 
tall of NF-L was replaced with the entire carboxyl-terminal 
tail of NF-H (Fig. 1 D). The hybrid protein, named LLH (the 
letters denote the subunit origin of the head, rod and tall, 
respectively) coassembles with the endogenous vimentin 
into cytoplasmic filament networks without any obvious 
signs of filament disruption or formation of nonfilamentous 
aggregates (Fig. 7, A and B). Thus, the assembly properties 
of the LLH hybrid in the presence of vimentin better approx- 
imates NF-L than NF-H, since at comparable levels of ex- 
pression NF-H disrupts filament networks in a significant 
number of cells. In IF- SW13 cells, the expression of the 
LLH hybrid alone (not shown) or co-expression with wild- 
type NF-L (Fig. 8, A and B) results in localization of the 
LLH hybrid into nonfilamentous aggregates that also contain 
NF-L. However, coexpression of LLH with wild-type NF-M 
yields assembly of LLH (Fig. 8 C) and NF-M (Fig. 8 D) into 
a cytoplasmic filament "network" composed of both long and 
short fragments of individual filaments, as well as small bun- 
dles of filaments. (LLH containing networks reproducibly 
show less extensive filament assembly than those constructed 
from NF-L, a feature most likely due, at least in part, to 
lower expression of MSV-promoted LLH. When MSV-NFL 

is used to express NF-L along with NF-M, a very similar 
filament array consisting of short and long filament frag- 
ments and small bundles is produced [not shown].) 

From these results, we conclude that (a) no specific se- 
quence within the entire tail region of NF-L is required for 
de novo filament assembly in vivo; (b) sequences within the 
NF-H tail are not directly involved in the assembly process; 
and (c) the NF-M and NF-H tail regions do not prevent an 
otherwise assembly competent NF subunit from filament as- 
sembly. 

To examine the influence of sequences contained in the 
amino-terminal head region of NF-L, NF-L truncation mu- 
tants in which either 22 (NFL-Nzx22) or 89 (NFL-Nzx89) 
amino acids were removed from the 93-amino acid amino- 
terminal head domain were individually coexpressed with 
the wild-type NF-M (each NF-L subunit was also epitope 
tagged at its carboxy terminus). In SW13 IF + cells, where 
either truncated NF-L subunit accumulated to a low level, 
expression of NFL-NA22 or NFL-NA89 resulted in com- 
plete coassembly with endogenous vimentin into the fila- 
ment network (not shown). In SW13 IF- cells, expression 
of NFL-Nzx22 with NF-M also resulted in assembly of a 
filament network consisting completely of copolymers of 
NFL-Nzx22 and NF-M (Fig. 9, A and B). However, the par- 
allel experiment with NFL-Nzx89 invariably yielded non- 
filamentous punctate aggregates containing both NFL- 
Nzx89 and NF-M (Fig. 9, C and D). Thus, as with NF-M, 
sequences within the amino-terminal head region (between 
Pro22 and Pro89) of NF-L are necessary for de novo assem- 
bly of filaments in an in vivo context. 

Figure 6. Sequences within the amino-terminal head but not carboxyl-terminal tail of NF-M are essential for complementing de novo assem- 
bly of NF-L in vivo. IF- SWl3 cells were co-transfected with pCMV-NFL and a series of either (A-F) carboxyl-terminal or (G--J) amino- 
terminal truncation mutants of NF-M. Numbers indicate deletion endpoints from either amino or carboxyl termini and the approximate 
borders of deletions are shown on the schematic of NF-M protein at the top. All of the NF-M mutant proteins contain a 12-amino acid 
myc-tag at the extreme carboxyl-terminus. (A, C, E, G, and I) Mutant NF-M subunits were localized by immunofluorescence microscopy 
using mouse monoclonal anti-myc-tag antibodies followed by fluorescein-conjugated horse anti-mouse IgG secondary. (B, D, F,, H, and 
J) NF-L subunits in same transfeeted cells as in A, C, E, G, and/were localized by double immunofluorescence microscopy using affinity- 
purified rabbit anti-NF-L antibody followed by Texas red--conjugated goat anti-rabbit IgG secondary. Bar, 10 #m. 
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Figure 8. LLH complements de novo assembly incompetence of NF-M. IF- SW13 cells were co-transfected with pMSV-LLH and either 
(A and B) pMSV-NFL or (C and D) pMSV-NF-M. (A and C) The LLH-hybrid was localized by affinity-purified rabbit anti-myc polyclonal 
antibodies followed by fluorescein-conjugated secondary. Double immunofluorescence microscopy was used to localize (B) NF-L and (D) 
NF-M by mouse mAbs to either NF-L or NF-M, followed by Texas red-conjugated secondary. Bar, 10/zm. 

Assembly of Neurofilament Networks in IF- 
Oligodendrocytes of Transgenic Mice Expressing Both 
NF-L and NF-M, but Not Either Subunit Alone 

To examine the de novo assembly properties of NF-L and 
NF-M in another in vivo context, we exploited two sets of 
transgenic mice that express MSV-promoted transgenes en- 
coding either wild-type mouse NF-L (Monteiro et al., 1991; 
Xu et al., 1993) or a mouse NF-M subunit in which the last 
50 carboxy-terminal tail amino acids were replaced with a 
12-amino acid epitope tag (Wong, P. C., J. Marszalek, and 
D. W. Cleveland, manuscript in preparation). Unlike the en- 
dogenous NF-L and NF-M genes, immunocytochemistry of 
frozen sections of tissues from transgenic animals revealed 
that both transgenes are expressed in some non-neuronal 
cells, including in oligodendrocytes of the lumbar spinal 
cord (data not shown). Since these cells, which myelinate 
central nervous system neurons, do not normally express cy- 
toplasmic intermediate filaments (e.g., Peters et al., 1991), 
we used EM of tissue sections of NF-L or NF-M transgenic 
animals to examine de novo filament network assembly. Just 
as in transfected SWl3- cells, extended filament arrays 
were not observable in oligodendrocytes of heterozygotes of 
either transgenic line (Fig. 10, A and B). However, examina- 
tion of oligodendrocytes produced by mating these two lines 
revealed that expression of both NF-L and NF-M yielded 
prominent, closely spaced bundles of 8-10-nm filaments 
(Fig. 10 C) that, at this level of resolution, were essentially 

indistinguishable from those found in neurons. Since such 
filament arrays were not found in oligodendrocytes from 
animals homozygous for either transgene, filament assembly 
in the NF-L/NF-M doubly transgenic animals cannot be due 
simply to increased expression of NF polypeptides; rather, 
it must result from assembly promoting interactions between 
NF-L and NF-M subunits. 

Discussion 

By transfection into a IF- cultured cell line and by forcing 
expression of NF subunits in IF- oligodendrocytes in trans- 
genie mice, we have uncovered the unexpected finding that, 
despite self assembly in vitro, NF-L is not sufficient for as- 
sembly of an NF network. Defective by itself, network as- 
sembly is restored to NF-L by substoichiometric amounts of 
NF-M or NF-H, neither of which alone or in combination 
with each other assemble networks. The obvious conclusion 
is that in vivo neurofilaments are obligate heteropolymers as- 
sembled from NF-L and NF-M/NF-H. Since tailless NF-M 
also complements NF-L assembly, but truncations into the 
amino-terminal head cannot, sequences in the NF-M head 
(and rod) provide the essential interaction for network for- 
marion by NF-L. Although the requirement of the NF-H 
head has not been directly tested, its tail (carried by hybrid 
subunit LLH) does not complement NF-L assembly. Thus, 
it seems highly likely that for NF-H, too, sequences in the 
head (and rod) mediate in vivo NF-L assembly. 
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Figure 9. The amino-terminal head of NF-L is essential for de novo coassembly with NF-M. IF- SW13 cells were co-transfected with 
pMSV-NFM and either (A and B) pMSV-NFL-N~22 or (C and D) pMSV-NFL-N~89. Immunofluorescence microscopy was used to 
localize (A) NFL-Na22 or (C) NFL-Na89 by affinity-purified rabbit polyclonal antibody followed by fluorescein-conjugated secondary. 
(B and D) Double immunofluoresence microscopy was used to localize NF-M by mouse monoelonal anti-NF-M antibodies, followed by 
a Texas red-conjugated secondary. Bar, 10 #m. 

The molecular basis for inability of NF-M and NF-H to 
form heteropolymeric filaments together in vivo is not clear. 
However, it is reasonable to assume that the carboxyl-termi- 
nal tail domains of these subtmits do not inhibit the actual 
assembly process, as shown by LLH/NFM heteropolymeric 
filament assembly (Fig. 8). Possibly the rod domains of 
NF-M and NF-H do not interact in a productive manner and 
may need to interact with NF-L. The structural basis for this 
possibility is suggested by the fact that unlike the assembly 
competent type I, II, HI, and other IV subunits, neither 
NF-M nor NF-H rods has the characteristic disruption in the 
o~-helix in coil I (Lees et al., 1988; Myers et al., 1987). 
However, nothing in the present evidence excludes the alter- 
native that some domain in the NF-L amino-terminal head 
may also be required for proper coassembly. 

That neurofilaments in vivo are obligate heteropolymers 
requiring NF-L and either NF-M or NF-H clearly estab- 
lishes the functional importance of NF-M and NF-H in the 
assembly and organization of neurofilaments. An obvious ex- 
tension of this finding is that the assembly of neurofilaments 
in neurons may be affected by posttranslational regulation of 
any one of the NF subunits. Both the obligate heteropoly- 
meric nature and the tendency for these filaments to bundle 
laterally in vivo resemble the properties of keratin filaments 
(Bader et al., 1991; Lu and Lane, 1990). However, the as- 
sembly of neurofilaments and keratins differ in one impor- 
tant area: the keratin filaments are stoichiometric heterodi- 
mers requiring one Type I and Type II keratin. In contrast, 
neurofilaments can apparently accommodate a wide range of 
NF-subunit ratios, a point of some significance since the NF- 
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Figure 10. De novo assembly of an NF network in oligodendrocytes 
of transgenic mice requires expression of both NF-L and NF-M 
transgenes. Thin section electron micrographs of oligodendrocytes 
expressing (A) NF-L alone, (B) NF-McA50 alone, and (C) both 
NF-L and NF-Mczx50. The insets show the cells from which A, B, 
and C were taken. Bar: 750 nm; (insets) 6 #m. 

subunit ratios do change dramatically during neuronal devel- 
opment (see Nixon and Shea, 1992). Whether the require- 
ment for heteropolymerization acts at the dimer, tetramer or 
higher order oligomer level has not yet been determined, al- 
though crosslinking experiments (Carden and Eagles, 1986) 
and antibody labeling of filaments assembled in vitro (Mulli- 
gan et al., 1991) are most easily explained by NF-L/NF-M 
or NF-L/NF-H heterodimers. 

Another feature that was not revealed by in vitro reassem- 
bly studies or previous transfection studies is the propensity 
for neurofilaments assembled in vivo to interact laterally to 
form bundles. Although some lateral interaction of filaments 
is seen with vimentin alone (Fig. 2 D) or when NF-subunits 

are coexpressed with vimentin (Fig. 3, A and C), the bundles 
are neither as striking or abundant as that observed for NF 
assembled in the absence of vimentin (e.g., compare Fig. 3, 
A and C with Fig. 4, A, C, and E). Possibly this is because 
vimentin (and other Type HI subunits) contain a region 
within the carboxyl-terminal domain that prevents filaments 
from laterally associating (Kouklis et al., 1991). On the other 
hand, neurofilaments may possess an inherent tendency to 
interact laterally, thereby allowing the carboxyl-terminal tail 
regions of NF-M and NF-H to modulate lateral spacing be- 
tween filaments by steric and electrostatic interactions. This 
hypothesis is consistent with the observation that the 
carboxyl-terminai tail region of both NF-M and NF-H ex- 
tend from the surface of the filaments (Hisanaga and Hiro- 
kawa, 1988). However, if this is true, what remains unclear 
is why neurofilaments have little lateral affinity in vitro. 

While the carboxyl-terminal tails are likely to be involved 
in regulation of higher order interaction between filaments 
and other cellular structures, the tails are not likely to be in- 
volved directly in actual assembly of neurofilaments in vivo. 
Even a completely tailless NF-M stimulates network coas- 
sembly with NF-L. At first glance, the efficient assembly of 
tailless NF-M (NFM-CLx438) with NF-L into a filament 
network may seem at odds with a previous report that this 
truncated NF-M is a dominant assembly disrupter (Wong 
and Cleveland, 1990). However, this is probably related to 
the differences in the level of expression after transfection 
into different cells; higher levels disrupt neurofilament ar- 
rays. Although NFL-Nzx89 has also been reported to be an 
assembly defective mutant (Gill et al., 1990), differences in 
the levels of mutant accumulation also probably account for 
coassembly of this "headless" NF-L mutant with the wild- 
type vimentin array observed here and by others (Chin and 
Liem, 1991). Overall, the current results are consistent with 
effects of carboxyl-terminal tail mutations on other filament 
types which collectively show that the amino-terminal head 
region is much more directly involved in filament assembly 
than are the carboxyl-terminai tail domains (Raats et al., 
1992, 1991, 1990; Bader et al., 1991; Lu and Lane, 1990; 
Kaufmann et al., 1985; also see Stewart, 1993). One ques- 
tion that remains untested is whether a filament network can 
be assembled from tailless NF-L and NF-M. For other IF 
subunits, several studies collectively suggest that filament as- 
sembly with tailless mutants may require presence of wild- 
type subunits (Albers and Fuchs, 1987; Lu and Lane, 1990; 
Raats et al., 1991; Eckelt et al., 1992; also see Coulombe, 
1993). 

The importance of the amino-terminal head region in as- 
sembly of neurofilaments in vivo has particular relevance to 
the regulation of neurofilament assembly in vivo. Direct in- 
volvement of amino-terminal head region of IF-subunits in 
filament assembly is indicated by deletion mutagenesis ex- 
periments on many IF subunits (Raats et ai., 1992, 1991, 
1990; Bader et al., 1991; Lu and Lane, 1990; Kaufmarm et 
al., 1985; also see Stewart, 1993), including neurofilaments 
(Gill et al., 1990; Wong et al., 1990; Chin et al., 1991). The 
importance of the head domains for neurofilament assembly 
is further underscored by our finding that truncation of 75 % 
of the NF-M head (NFM-NA75) fails to complement NF-L 
assembly, although it can coassemble with self-assembly 
competent vimentin (Wong and Cleveland, 1990). Further, 
the amino-terminal head domain of Type 111, IV, and V 
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subunits are known to be substrates for phosphorylation in 
vivo and phosphorylation of this region either inhibits as- 
sembly or causes disassembly of filaments both in vitro and 
in vivo (Ando et al., 1989; Evans, 1989; Inagaki et al., 1989; 
Kitamura et al., 1989; Chou et al., 1990; Hisanaga et al., 
1990; Peter et al., 1990; Sihag and Nixon, 1990, 1991). For 
the NF subunits, major in vivo phosphorylation sites on the 
amino-terminal head domain are either located within (Ser55 
on NF-L and a phosphopeptide starting at Ser44 on NF-M; 
Sihag and Nixon, 1990, 1991) or are very near (a phos- 
phopeptide starting at Ser2~ on NF-M; Sihag and Nixon, 
1990) the sequences essential for in vivo neurofilament as- 
sembly. Additionally, the phosphate on Ser55 of NF-L dis- 
plays rapid turnover immediately after NF-L synthesis in 
neurons (Sihag and Nixon, 1991). Moreover, both NF-L and 
NF-M isolated from rat spinal cord are posttranslationally 
modified by addition of O-linked N-acetylglucosamine moie- 
ties (Dong et al., 1993). Three of four sites identified lie in 
the amino-terminal head region and all of three of these are 
located within (Ser27 on NF-L and Thr48 on NF-M) or near 
(Thr2t on NF-L) the domain essential for in vivo neuro- 
filament assembly. Collectively, it seems very likely that 
modification of the head domains on NF subunits affects as- 
sembly. Among the interesting possibilities for regulation in- 
clude blocking premature assembly prior to transport into 
neurites. It remains for future efforts to define more clearly 
how each modification ultimately affects network assembly. 
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